$H \rightarrow \gamma \gamma$ Full Simulation

Y.Q. Fang, K.Loureiro, B.Mellado, Sau Lan Wu

University of Wisconsin

Higgs WG meeting 07/04/04

Outline

- H→ $\gamma\gamma$: comparisons of M $_{\gamma\gamma}$, P $_{T\gamma\gamma}$ between Pythia and MC@NLO with full sim
- \blacksquare M_{$\gamma\gamma$}: Vertex Correction
- H(→γγ)+jet: analysis comparison between full and fast Simulations
- Conclusions

Pythia and MC@NLO

 P_T of $\gamma \gamma$ Distribution

Cuts applied : $P_{T\gamma 1}$ > 40 GeV, $P_{T\gamma 2}$ > 25 GeV, Offline cuts for γ ID

Reconstruction of $M_{\gamma\gamma}$

No Calibrations of γ and Vertex

Vertex Correction

3 quarters in Calorimeter
Half in Calorimeter
Quarter in Calorimeter
Inner face of Calorimeter

Z: axis of the Interaction axis

O: standard IP

O': corrected O from tracking block

C: shower centre in calorimeter

R_c: radius of shower centre

For the time being, try different depths of shower centre. In the future, we will use the a shower depth parametrization

Z vertex R vertex

No calibration to the recon of M_H applied

The improvement of σ is 26%

Before Vertex Correction

After Vertex Correction

Position of shower centre is assumed at diff. calorimeter depths

$\Delta\sigma/\sigma$ not higher than 1%, so it can be viewed as higher order correction

inner face quarter

м

$H(\rightarrow \gamma \gamma)$ +jet: Full and Fast Simulation

$$M_H = 130 \text{ GeV}$$

MC@NLO

Athena version 7.0.2

Cuts applied:

- $P_{T\gamma 1} > 50 \text{ GeV } P_{T\gamma 2} > M_H/2-15 \text{ GeV}$
- \triangleright Offline Cuts for γ ID (Karina 25/9/03)
- \triangleright P_{T,I} > 30 GeV
- \rightarrow M_{yyJ} > 300 GeV

$H(\rightarrow \gamma \gamma)$ +jet: Efficiency and Cross section

 $g g \rightarrow H$

	fast sim	full sim
$P_{T\gamma 1} P_{T\gamma 2}$ cuts	0.36	0.36
γΙΟ	0.64 (set)	0.80
P _{TJ} > 30 GeV	0.36	0.35
$M_{\gamma\gamma j} > 300 \text{ GeV}$	0.47	0.51
Cross Section(fb)	2.43	3.25

Conclusions

- MC@NLO has somewhat harder $P_{T\gamma\gamma}$ and 5-10% better $M_{\gamma\gamma}$ resolution than Pythia.
- Vertex correction improves the resolution of the reconstructed M_H by 26%. The correction due to the position of centre of shower in the calorimeter can be viewed as a higher order correction.
- For $(H \rightarrow \gamma \gamma)$ + jet, efficiency of full sim is 34% higher w.r.t fast sim due mostly to γ -ID. The other cuts in Fast and full simulations give close efficiencies.